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ABSTRACT. In this study, a support vector machine model available in Weka Algorithms, was utilized to 

test the predictive capacity of compressive strength in high strength concrete (HSC) with steel fiber addition. 

To test the performance of the algorithm, a certain percentage were allocated for training of the algorithm, 

and the rest for test. This was done from 60-40 percent split up to 90-10 percent split for training and testing 
respectively. Results generated from the model include mean absolute error(MAE), root mean squared error 

(RMSE), and relative absolute error (RAE) for each model. It was observed that the correlation coefficient 

for all the percent split was 0.82, and the highest and lowest MAE were 9.969 and 9.4714 respectively, an 
indication of reliability and precision.   Utilization of free algorithms in civil engineering construction will 

enhance the optimization of concrete mixtures. 
  

Keywords: High strength concrete, steel fiber-reinforced concrete, compressive strength 

prediction, algorithms, support vector machine. 

 

1. INTRODUCTION  

 

          Support Vector Machines (SVM) are systems which uses hypothesis space of a linear function in 

a high dimensional feature space, trained with a learning algorithm from optimization theory that 

implements a learning bias derived from statistical learning theory (SLT). They belong to a family of 

generalized linear classifiers. In other words, SVM is a classification and regression prediction tool that 

uses machine learning theory (MLT) to maximize predictive accuracy while automatically avoiding 

over-fit to the data [1]. SVMs are a set of related supervised learning methods used for classification 

and regression [2].  

          SVM has found wide application in face recognition software, time series prediction, and medical 

diagnosis, [3 - 5]. These successes have further invigorated research to widen their applications [6].  

Support vectors are data points that lie closest to the decision surface or hyperplanes [7]. It is extremely 

difficult to classify these data points because they have direct bearing on the optimum location of the 

decision surface to find an optimal solution. This is done by maximizing the margin around the 

separating hyperplane. 
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Fig.-1: Support Vectors around a hyperplane [7]  

 

The simplest formulation of SVM is linear where the hyperplane lies on the space of the input data x: 

𝑓(𝑥) = 𝑤. 𝑥 + 𝑏                                                                                                             (1) 

Where: 

w = weight vector 

x = input vector 

b = bias 

 

           SVM finds a hyperplane in a space different from that of the input data x. It is a hyperplane in a 

feature space induced by a Kernel (the Kernel defines a dot product in that space) [8].  The concept of a 

Kernel was explained in [1] as “if a data is linear, a separating hyperplane may be used to divide the 

data. In cases where the data is nonlinear, Kernel are used to map the input data to a high-dimensional 

space, thus making the new data separable [2]”. This introduces a new concept, the ‘Kernel Function’ 

which enable operations to be performed in the input space rather than potentially high-dimensional 

feature space. Through the Kernel, the hypothesis space is defined as a set of “hyperplanes” in the feature 

space induced by K. This can be seen as a set of functions in a Reproducing Kernel Hilbert Space 

(RKHS) defined by K [8-9]. Further discussion on Kernel function in SVM and its performance can be 

found elsewhere [10]. 

2. GENERAL INPUTS/OUTPUTS IN SVM 

            In SVM, the set of training pair samples (input, output) are X1, X2…Xn, as the inputs while the 

output result is y. A set of weights w (or wi) one for each feature, whose linear combination predicts the 

value of y, as what is obtainable in neural networks. However, the significant difference is the use of 

optimization of maximizing the margin (street width – hyperplane) to reduce the number of weights that 

are nonzero to just a few that correspond to the important features that plays a role in deciding the 

separating line (hyperplane). These nonzero weights correspond to the support vectors as seen in Fig. 2, 

because they “support” the separating hyperplane [6].    
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Fig.-2: Support Vectors ‘supporting’ a separating hyperplane [7] 

  

Input vectors that just touch the boundary of the margin are defined as in Fig. 2 where: 

H = hyperplanes 

d = shortest distance to the closet point. 

 

            The key advantages of neural network algorithms are that it has the ability to learn, recognize, 

generalize, classify, and interpret incomplete and noisy inputs to represent both linear and nonlinear 

relationships with great accuracy [11]. Artificial neural networks (ANN) have been successfully used to 

predict multiple variables and nonlinear behavior of different parameters in the concrete mixture to 

obtain compressive strength under different ages [12-16]. 

            To minimize the experimental task of concrete mix design, probabilistic models are generally 

constructed and constitutive equations are derived [17]. Regression analysis though quicker and simpler 

in making predictions, the accuracy is found to reduce as the number of independent variables increases 

[18]. Therefore, in this kind of situations, the use of algorithm related programs is more accurate to 

predict the models.  ANNs have also been used to optimize the proportion of four concrete ingredients 

(water, cement, fine, and coarse aggregates) [19]  were used to predict 28-day compressive strength of 

HPC with six components (cement, silica fume, superplasticizer, water, fine and coarse aggregates) has 

been predicted using fuzzy-ARTMAP ANNs [20]. A combination of fuzzy neural networks and 

polynomial neural networks has been experimented by [21] with six input parameters (ingredients) and 

28-day compressive strength as the output parameter. 

           The originality of this study is aimed at utilizing free algorithms that were otherwise used for 

classification and clustering of data in computer science to be able to predict compressive strength of 

HSC with steel fiber addition. The significant contribution of this paper is in customizing the use of this 

algorithms and their potential applicability in civil engineering. Also, worth mentioning is the use of ten 

(10) attributes were previous studies using ANN [19 – 20] have been limited to six. The study is limited 

to SVM alone using data collected from literature.    

3. SOFTWARE ARCHITECTURE 

            The algorithm used is Sequential Minimal Optimization (SMO) credited to John Platt [22] that 

has been customized in Weka Algorithm. It provides an efficient way of solving dual problem arising 

from the derivation of SVM. It has been widely applied to pattern classification problems and nonlinear 

regressions [23]. The SVM is trained as a classifier using a portion of the training dataset, then use the 

classifier that was trained to classify the remaining data. They find an optimal solution to data points 

that are more difficult to classify.  
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3. PREDICTION METHODOLOGY  

              The software utilized was Weka Version 3.8.3, an open source Java based machine learning 

algorithm created by University of Waikato, New Zealand. To utilize the software, the inputs known as 

‘attributes’ had to be prepared in either csv or arff format as seen in Fig. 3 where all the attributes 

(parameters) were defined, including the response compressive strength. It should be noted that the 

attributes are written as a single word for titles with more than one words such as “FiberDiameter” or 

“FiberLength”. The data used in this study was obtain from sources in Table 1 and entered as according 

to how the attributes were arranged in Table 2. If a mistake is made during entry without following the 

pre-defined format, the program will return an error message specifying the line number where the 

problem is located. All the data for the attributes were placed, each separated by a ‘comma’ and saved. 

 

 

Fig-3: Example of an arff or csv file created using Notepad used in preprocessing 

             In the Weka Software interface, the menu “Explorer” is selected followed by “Preprocess” 

where the csv or arff file is uploaded. Next, “Classify” input function is selected followed by “Percentage 

Split”. This is because a certain portion of the data would be used for training, and the rest for test. In 

here, 60-40 % was the initial starting point for training-testing. This was continued with an increment 

of 10 % up to 90-10 % for training and testing. This is to ascertain the influence of percent split on the 

algorithm. The “Choose” function on the software interface, followed by SMO was selected. After 

running the program, the output is displayed in the right hand corner of the software interface, however, 

the programmer has to decide the mode of storage. It can be stored in CSV format in the form of excel 

spreadsheet, plain text that can be opened with text editors, or store the model for future use when more 

data is available. 
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Table-1: Sources of Data from Literature 

S/No References 

1. Ackgenc et al., [24] 

2. Abubakar [25] 

3. Eren & Marar [26] 

4. Eren et al., [27] 

5. Ibrahim & Che Bakar [28] 

6. Marar et al., [29] 

7. Nguyen-Minh et al., [30] 

8. Nili & Afroughsabet [31] 

9. Pigeon & Cantin [32] 

10. Sahin & Koksal [33] 

11. Unal et al., [34] 

12. Yalcin [35] 

 

Table-2: Attributes with maximum and minimum values used 
Cement 

(kg/m3) 
Water 

(kg/m3) 
Dmax 

(mm) 
Coarse 

(kg/m3) 
Fine 

(kg/m3) 
SP 

(kg/m3) 
Vf 

(%) 
Lf 

(mm) 
Df 

(mm) 

fc (MPa) 

565-288 230.2-123 31.5-10 1398.8-749.2 1064.2-530 17-0.5 2-0.19 60-30 1-0.1 116-18.18 

SP: Superplasticizer, Vf: Fiber Volume, Lf: Fiber Length, Df: Fiber Diameter 

4. RESULTS  

                 An annotated computer printout of the result (see Appendix) for SVM - SMO algorithm is 

presented for the training-to-testing percentage of 90 - 10. The total number of datasets called 

“instances” clearly stated as well as the attributes (parameters), followed by the percentage of split; and 

the time taken to generate the model. This is followed by four columns of data (serial number, actual 

dataset, predicted dataset, and the error), each significant. 

                 The left hand column gives the actual data that was used for testing, and the right hand side, 

the prediction output. At the extreme right hand column, the prediction error result is presented for the 

instances. In the error, it could be seen that some data have negative signs attached to them while others 

are in the positive territory with a very high values. The former shows an underestimation of the values, 

while the latter indicates an overestimation, sometimes gross over or under estimation by the model 

occur. Values that are very close zero indicates they are closer to the actual value because the prediction 

error is small, values that equals zero shows the prediction efficiency. 

               The printout concludes by presenting a summary of model performance evaluation depicted in 

Table 3. First is Correlation Coefficient (CC) which measures the statistical correlation between the 

predicted values and the actual values, for good performance of the model, large values should be 

expected. This should not be confused with coefficient of determination (R2) which measures the quality 

describing the proportion of variability explained by the fitted model. 
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Table-3: Model Evaluation 
Training-to-Testing 

Split 

60 70 80 90 

Correlation 

Coefficient 

0.8247 0.8198 0.819 0.8242 

Mean Absolute Error 9.7865 9.5017 9.4714 9.969 

Root Mean Squared 

Error 

13.1872 13.2857 12.9453 13.9515 

Relative Absolute 

Error % 

49.8779 48.5766 50.4762 47.8588 

Root Relative Sq. 

Error % 

57.335 57.9612 57.3818 56.6328 

Instances 77 58 38 19 

 

 Mean Absolute Error (MAE) is another index that measures the performance of a model. It 

measures how close predictions are to the eventual outcomes by measuring average magnitude of the 

errors in a set of forecasts: 

𝑀𝐴𝐸 =  
1

𝑛
 ∑ |𝑓𝑖 − 𝑦𝑖|𝑛

𝑖=1                                                                        (2)                                                                                                       

Where fi = prediction; yi = true value 

To measure the differences between values (sample values) predicted by a model and the values 

actually observed, Root Mean Square Error (RMSE) was also utilized. This represents the sample 

standard deviation of the differences between predicted values and observed values. 

𝑅𝑀𝑆𝐸 =  √
∑ (𝑓𝑖−𝑦𝑖)2𝑛

𝑖=1

𝑛
                                             (3)                                                                                                                         

RMSE is preferred when large errors are undesirable, and it is always larger than MAE. 

Two other errors evaluated were Root Absolute Error (RAE) and Root Relative Squared Error 

(RRSE) where the former shows much the results deviates from actual value, and the latter is a measure 

in percent compared to the actual value. Both shows how far the prediction deviates from the actual 

value. 

𝑅𝐴𝐸 =  
∑ |𝑓𝑖− 𝑦𝑖|𝑛

𝑖=1

∑ |𝑡𝑖− 𝑦𝑖|𝑛
𝑖=1

                                                        (4)                                                                                                                             

Where ti = mean value of y 

𝑅𝑅𝑆𝐸 =  √
∑ (𝑓𝑖− 𝑦𝑖)2𝑛

𝑖=1

∑ (𝑡𝑖− 𝑦𝑖)2𝑛
𝑖=1

                                                   (5)                                                                                                                    

Lower values of these errors and a high CC values indicates that the model is suitable and 

prediction accuracy is very high, however, if the results is otherwise, it is an indication that more data 

might be required to improve the model performance. 

 

         Results generated by the algorithm were plotted against the actual results and presented in Fig. 4 

– 7. Coefficient of determination R2 was also determined after curve fitting, where quadratic models 

were found to be the best fit.  
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Fig-4: Prediction efficiency for 60 – 40 split 

 

 

Fig-5: Prediction efficiency for 70 – 30 split 
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Fig-6: Prediction efficiency for 80 – 20 split 

 

 

 

Fig-7: Prediction efficiency for 90 – 10 split 

5. CONCLUSIONS  

This study involving HSC with steel fiber addition evaluated the performance of SMO – SVM in 

Weka Software in the prediction of concrete compressive strength and the following conclusions have 

been drawn:  

 WEKA software was able to be trained to utilize attributes (concrete ingredients) to give an 

appropriate output that can be replicated.  

 To validate the performance of the models, correlation coefficient (CC) measured were 82 % 

for all the percentage splits, and it is seen that increasing the percentage of training dataset up 

to 90% did not have significant effect on the CC values. 
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 Quadratic model was the best fit with R2 of 0.68, 0.67, 0.68 & 0.69 for the percent splits 

respectively. 

6. RECOMMENDATIONS 

            Future study should explore the possibility of increasing the sample size, as well as other 

methods such as Bootstrap and Cross Validation. 
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APPENDIX  

A Typical Weka Software printout for SMO 90-10 

=== Run information ===   

Scheme:       weka.classifiers.functions.SMOreg -C 1.0 -N 0 -I "weka.classifiers.functions.supportVector. 

Relation:     Prediction   

Instances:    192    

Attributes:   10    

              cement    

              water    

              Dmax    

              coarse    

              fine    

              superplasticizer   

              volumefraction   

              fiberlength    

              fiberdiameter   

              compressiveStrength   

Test mode:    split 90.0% train 

=== Classifier model (full training set) ===  

SMOreg      

weights (not support vectors):    

 +       0.2088 * (normalized) cement   

 -       0.1966 * (normalized) water   

 -       0.2473 * (normalized) Dmax   

 -       0.1409 * (normalized) coarse   

 -       0.4128 * (normalized) fine   

 -       0.0754 * (normalized) superplasticizer  

 +       0.1501 * (normalized) volumefraction  

 +       0.0159 * (normalized) fiberlength   

 -       0.088  * (normalized) fiberdiameter   

0.798      

Number of kernel evaluations: 18528 (95.68% cached) 

Time taken to build model: 0.04 seconds   

=== Classifier model for training split (173 instances) === 

SMOreg      

weights (not support vectors):    

 +       0.2166 * (normalized) cement   

 -       0.3157 * (normalized) water   

 -       0.2643 * (normalized) Dmax   

 -       0.1081 * (normalized) coarse   

 -       0.5398 * (normalized) fine   

 -       0.136  * (normalized) superplasticizer  

 +       0.1623 * (normalized) volumefraction  

 +       0.0187 * (normalized) fiberlength   

 -       0.1113 * (normalized) fiberdiameter   

0.9672          
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Number of kernel evaluations: 15051 (94.938% cached) 

=== Predictions on test split ===   

inst# actual predicted error   

1 80.95 79.985 -0.965   

2 56 65.792 9.792   

3 42 20.12 -21.88   

4 116 87.694 -28.306   

5 41.13 46.068 4.938   

6 41.08 38.437 -2.643   

7 33.52 41.605 8.085   

8 42.51 46.258 3.748   

9 78.2 77.894 -0.306   

10 91.49 86.442 -5.048   

11 93.8 75.861 -17.939   

12 33.2 70.517 37.317   

13 87.4 82.375 -5.025   

14 35 23.926 -11.074   

15 39.2 45.672 6.472   

16 48 62.989 14.989   

17 45.6 43.842 -1.758   

18 62.6 60.441 -2.159   

19 37.27 30.303 -6.967   

=== Evaluation on test split ===   

Time taken to test model on test split: 0.02 seconds 

=== Summary ===     

Correlation coefficient                  0.8242   

Mean absolute error                      9.969    

Root mean squared error                 13.9515   

Relative absolute error                 47.8588 %  

Root relative squared error             56.6328 %  

Total Number of Instances               19        

 
 

 

 

 


