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ABSTRACT. This paper describes iterative procedure for stability analysis of stiffened built-up stiffened box 
sections subject to combined loadings. Unconstrained optimization algorithm (UOA) is used to compute the global 

and local buckling stresses. Energy formulation is first presented for the structural elements assuming the 
stiffeners are rigidly connected to the flanges. Global buckling load is determined by minimizing the 

unconstrained objective function with respect to the displacement coefficients. The webs are assumed as partially 

restrained against rotation and subject to non-uniform compressive and shear loadings. Web local buckling is 
formulated using (UOA) by treating the skew angle and half wave length as design variables. Results are presented 

to illustrate structural performance of the assembled box section. Design guidelines are proposed that can be 
utilized in practice to maximize the structural response. 

 

Keywords; Box sections, structural stability, stiffened plates, steel structures, hollow sections. 

 

1.  INTRODUCTION 

Built-up box sections are widely used in many engineering applications. Examples are box girder 

bridges, equipment and platform supports, conveyors and offshore structures. Built up box section can be 

fabricated by assembling individual plate elements or by joining two cold-formed C-sections face to face. 

The former approach allows the designer to use different flange and web thicknesses in order to reduce 

overall weight. In the second approach, two channels are fastened using self-drilling screws. The combined 

channels act together to resist induced the applied loading. The application of cold formed steel built-up 

box sections has been very popular in low or mid-rise residential and commercial buildings in North 

America. It is common in practice to stiffen the flanges to increase structural performance. 

 

Box sections components may buckle locally or globally during operation. Several analysis and 

experimental procedures were developed in the past to demonstrate the structural performance. Early efforts 

by Vlasov [1] contributed to the development of simplified one dimensional beam element model that is 

popular in the industry to simulate the response of box sections with single or multiple spans. Refined 

analytical and numerical models also emerged utilizing advanced numerical analysis procedures such as 

Finite Element or Finite strip methods to analyze box sections using two or three dimensional stresses and 

displacement. Table (1) summarizes recent investigations done for box sections. The first column provides 

the reference number in square bracket. The second column briefly describes the investigation scope. 
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Table-1: Summary of investigations for box sections 

Reference [No] Investigation Description 

[2] Behavior of built-up cold formed steel box sections subject to axial compression 

[3] Stability of box section subject to eccentric axial loading. 

[4] Flexural torsional buckling of box sections subjected to eccentric force. 

[5] Influence of stiffener rigidity on buckling loads of flanges. 

[6] Boundary Element formulations for analysis of stiffened flanges. 

[7] Presented simplified models for analysis of box beam sections 

[8] Local and global buckling of stainless steel columns. 

[9] Effect of internal bracings on local buckling of hollow sections. 

[10] Capacity of box section subject compression and bending. 

[11] Influence of flange ductility for short steel box columns. 

[12] Analysis of stiffened composite using Fourier series approximations 

[13] Experimental data of stainless steel members. 

[14] Finite Element modeling strategies for orthotropic box sections. 

[15] Analysis of composite box sections using used Mindlin shear deformation model. 

 

 Box sections are sometimes filled with concrete to increase compressive and flexural capacity. The 

interior concrete material in this case restrains the attached box section plate components against inward 

buckling. The increase in buckling strength of these composite sections may reach 40% in. Local buckling 

of box sections filled with concrete has also received the attention of several researchers. Chen, et.al., [16] 

presented experimental and numerical investigations to examine performance of axially compressed steel 

tubes. Song, et. al. [17] investigated local buckling of high strength box steel sections with concrete infill 

using Finite Element procedure. Other investigations were reported by Lam and Williams [18], Liang [19], 

Ge [20] and Sakai et al. [21].   

  

Built up box structural elements are frequently subject to various load combinations including 

compression and biaxial bending moments and shear. Therefore, stability is a critical design criterion. 

Furthermore, local web shear buckling is critical for deep box sections. Limited guidelines in design codes 

and engineering standards [22- 32] are available in practice for analysis of box sections subject to load 

combinations including shear loading. Much of the investigations focused to develop numerical or empirical 

analysis procedures for box sections under compression or bending. 

 

            References [33-37] illustrated static and dynamic response of walled sections. In some loading 

conditions FE and FS procedures require excessive computer time and consequently may not be practical for 

analysis of box section assemblies. Objective of this paper is to provide alternative numerical iterative 

procedure that can be used to predict global and local buckling of built-up stiffened box sections. The 

mathematical formulations are first presented for the box section components. Unconstrained optimization 

algorithm (UOA) is then described to compute global and local buckling. Results are also presented to 

illustrate the behavior of box sections. Design guidelines are proposed to maximize the structural response. 

Comparison with FS and FE is also provided. 

 
2. FLANGE FORMULATIONS  

    Consider stiffened box section assembly shown in Fig.(1) of length (L), subject to combined 

compressive force (P) and biaxial moments (M1, M2), in the directions shown. The web and flange sizes are 

denoted by (bw,tw) and (bf,tf), respectively. The top and bottom flanges are denoted by (TF, BF), and the webs 

are denoted by (LW, RW) as shown in Fig.(1). Longitudinal stiffeners are attached to the top flange (TF) that 

are characterized by cross sectional area= (ALS), first moment of inertia=(QLS), major and minor second 

moments of inertia {ILS
y,ILS

z} and torsional rigidity = (JLS). The number of longitudinal and stiffeners are 
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denoted by NLS. Note that the application of moments (M1 , M2) causes the applied stress to vary across the 

webs and the flanges. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig-1: Typical Box section Assembly 

 

 
In the present formulation, the following non-dimensional parameters are used to relate the web and the 

flange sectional properties;  
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The stiffened top flange (TF) out-of-plane and in-plane displacement functions (WTF, UTF, VTF) are assumed as 

follow; 
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Where {Ri
TF(ξTF), Qj

TF(ηTF), Pm
TF

 (ξTF), Sn
TF( ηTF), Tr

TF(ξTF), Uz
TF

 (ξTF)} are one dimensional shape functions that 

describes the top flange out of plane and in-plane displacement profiles, {Aij
TF, Cmn

TF
, Drz

TF} are the associated 

undetermined coefficients. 

 

The top flange strain energy (SETF) is expressed in the following compact form;  
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Where {TF1 -TF7} are integral functions that contain the displacement profile and the sectional geometric 

properties. For example, TF1, TF2 and TF3 have the following forms; 
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By similar analogy, the bottom flange strain energy (SEBF) can be formulated.  The strain energy of typical 

longitudinal ith stiffener (SELSi) attached to the top flange can be expressed as follow; 
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Where [LS1-LS7] are integral functions that contain displacement and geometric parameters, given by; 
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           The strain energy top flange transverse stiffener (SETS) can be formulated using similar analogy. The 

work done by the applied and restraining forces can also be expressed as follow; 
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3. WEBS FORMULATIONS  

       For deep box sections, web local shear buckling is possible failure mode that may occur prior to the 

stiffened flanges. Due to the application of (M1) and (M2), both webs are subject to different magnitude of 

compressive forces. For illustration, the compressive stress distribution at the left and right webs (RW) and 

(LW) are given by; 

(15) 

(18) 

(16) 

(19) 

(17) 

(20) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 



P a g e  | 15 

 12 IIRWIxx
RW
xx    

 12 IILWIxx
LW
xx    

 

               Where (σRW
xx, σLW

xx) are the applied stress variations across right and left webs (RW) and (LW) 

and (ωI, ωII) are non-dimensional stresses given by; 
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        Note that {σ1, σ2} are bending stresses resulting from application of (M1) and (M2), respectively 

Therefore, each web is subject to non-uniform linearly varying compressive forces and shear forces. Noting 

that stress variation of Eqs.(21, 22) reveals that the right web (RW) is subject to a larger magnitude of 

compressive forces and hence may buckle prior to (LW). 

 

               By treating the webs as partially restrained against rotation the buckling load depends upon 

web/flange sizes.   In the present formulation, the total shear forces acting on the longitudinal web edges are 

denoted by (𝜏). The inclusion of the shear forces causes the nodal lines in the buckling mode to be skewed. 

The oblique (or prime) coordinate system is related to the skew coordinates by using the phase angle (𝛟) as follow; 

 secy  = y      ,tan y - x =x \
RWRW
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                 The out-of-plane and in-plane displacement functions (WRW, URW, VRW) of the critical web (RW) are 

assumed as follow;  
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 (ξRW)} are the (RW) 

displacement functions and  {Aij
RW, Cmn

RW
, Drz

RW} are the associated coefficients. 

 

               The strain energy (SERW) of the each web is composed of bending and rotational strain energy that 

can be expressed as; 
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             Where (BSERW) is the web bending strain energy, (RSERW) is rotational strain energy. Work done 

by shear and compressive forces can also be expressed as follow; 
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                Where (WDARW) is the work done by applied forces and (WDRRW) is the work done by the 

restraining reactions. 
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4. UNCONSTRAINED OPTIMIZATION FORMULATION  

                  Global stability of the box assembly can be computed by combining strain energies components 

given by equations (3,7,15,16,26,27). The total strain energy is expressed as follow 
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                 Where (TSE) is the total strain energy of the assembled box section. C1-C10 are control parameters 

that equal either (0) or (1), depending upon the buckling coefficient being determined. Values of (C) 

parameters are summarized in Table (2). For example, for global buckling of stiffened box section C1-C10 = 1. 

 

Table-2: Numeric values of C1-C10 of Equation (29) 

Buckling 

Coefficient 
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 

KGlobal 1 1 1 1 1 1 1 1 1 1 

KTF 1 1 1 1 0 0 0 0 0 0 

KBF 0 0 0 0 1 1 0 0 0 0 

KRW 0 0 0 0 0 0 1 1 0 0 

KLW 0 0 0 0 0 0 0 0 1 1 

 

                    For unstiffened box section C3=C4=0. Similarly, the top flange local buckling stress can be 

obtained by setting C1=C2=C3=C4=1 and C5-C10=0, to obtain; 
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                  Minimizing the buckling load factor (KTF) with respect to displacement coefficients (Aij
TF, Cmn
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Drs
TF) leads to the following unconstrained optimization problem; 
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                   The solution of the above unconstrained optimization algorithm (UOA) provides local buckling 

stress of the flange.  
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                     By similar analogy local buckling stress of the right web (RW) can be obtained by assembling strain 

energy components and using C7=C8=1 as follow; 
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                 Where E is modulus of elasticity and ν is Poisson's ratio and KRW is buckling coefficient given by; 
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                    Where RWJ1- RWJ10 are integral functions that contain displacement profiles and geometric 

properties. The unconstrained optimization problem in this case is expressed as; 
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                    Note that due to the presence of the shear, the phase angle and half wave length (ϕ,λ) are treated as 

design variables. The above unconstrained optimization problem can be solved using Sequential Quadratic 

Programming.  The objective is to find for prescribed functions displacement functions and geometric 

parameters, the design variables that minimize the K factor given by Eqs. (30) or (34). 

 

                   The minimization strategy of Sequential Quadratic Programming is determined through an iterative 

procedure described by; 

 

... 3, 2, 1, 0, = k          + x = x
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                   Where the superscript (k) represents the iteration number and subscript (i) denotes the number of 

design variables, (x) is a vector containing these variables, (β) is a step size and (ζ) is a search direction vector 

that is determined by generating and solving a sequence of quadratic sub-problems. In each iteration, the search 

direction and step length are computed to reduce the objective function. At typical kth iteration, the search 

direction is computed from the solution of the quadratic, Taylor expansion of the buckling coefficient (K); 
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                 Where K=K/xi is the gradient of the buckling coefficient at the kth iteration and 2K is the 

Hessian matrix given by; 

(36) 
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                 After obtaining the search direction, each iteration proceeds by determining a step length (ζ) that 

produces sufficient decrease in the objective function. The process continues until the decrease in (K) is 

negligible. 

 
5.  Numerical Verification and Results  

Accuracy of the (UOA) is compared in Table (3) with the numerical values presented by Pham and Hancock [38] 

using semi-analytical finite strip (FS) method. The comparison is made for (θ) = 1.67, 2, 2.5, 3.33, 5 and 10. In 

the (FS) solution, the web was discritized using 16 longitudinal strips and the flanges using 10 strips. The values 

of the unconstrained optimization algorithm (UOA) were obtained by minimizing the non-linear expression of 

(KRW) given by Eq.(33).  As can be seen in Table (3) the prediction of both methods is within reasonable 

agreements. The average difference between (UOA) and the Finite Strip analysis is approximately 7%. 

 

Table-3: Comparison of Shear Buckling KRW factor for partially restrained condition 

 

θ FS 

Ref. [38] 

Present 

[UOA ] 

1.67 6.81 7.40 

2 6.72 7.18 

2.5 6.60 6.81 

3.33 6.43 6.60 

5 6.19 6.30 

10 5.88 6.00 

 

                 Fig.(2) shows the top flange local buckling load factor (KTF) obtained using (UOA) with the 

flange/web thickness ratio (ε) for built-up stiffened box section. Modulus of Elasticity E=200 GPa and 

Poisson’s ratio =0.33. The curve with solid circles represents a flange with six equally spaced stiffeners 

(NLS=6). The curve with solid triangles represents a flange with five stiffeners (NLS=5). It can be noted that 

the variations in the buckling load factor is influenced by the flange and the web geometric proportions. 

 

 

 

 

 

 

 

 

 

Fig.-2: Buckling Coefficient (K) vs. (tf/tw ) for NLS=5, 6. 

(37) 

KTF
 

(NLS)=6 

(NLS)=5 
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               In both cases, a rapid increase in the (KTF) factor is observed in the early stages. The increase is 

more pronounced as the number of stiffeners increases. As illustration, For (ε)= 0.63, the (KTF) = 17.7 for 

(NLS=5). This value increases to (KF) =18.6 by adding a stiffener (NLS=6). It worthwhile noting that the 

increase in (KTF) for NLS=5 ranges between (16.8 and 18.3) by increasing (ε) from 0.25 to 2.25. This range 

is widened for (NLS=6) to 17.4 and 19.8. To illustrate cost efficiency, assume it is required to design a flange 

section for buckling stress of σTF
cr = 250 MPa. Therefore, by using six stiffeners, the overall weight of the 

box girder to prevent this local buckling stress is 6.3 tons. If this (σTF
cr)  to be achieved without using 

stiffeners, the weight of the box girder should increase to 9.3 tons by adjusting the flange thickness. This 

corresponds to almost 55% increase in weight. 

 

                Fig.3  shows stability design space of box section subject to uniform compression. The buckling 

coefficient (K) variation with (ε) is shown for (θ) = 1.5. The curve with circle legends represents the flange 

domination while the triangles represent the range of (ε) when the web dominates buckling. The point of 

intersection (K)=6.65 at (ε)= 0.88 represents the optimum design when both flange and web buckle 

simultaneously. Therefore, the flange dominates buckling load for in the range (ε) ≥ 0.86.  If the engineer, 

for example decides to use a flange width of 900 mm, web width 800 mm, and web thickness of 14 mm. The 

optimum flange thickness required in this case is 12mm. Therefore, the feasible stability domain is the area 

below the curves. 

 

 

 

 

 

 

 

 

 

 

 

 

    Fig.-3: Box section Stability Boundary 

 

 

Fig. (4) shows the influence of the web on buckling stress of the top flange. For convenience, the top flange 

end stresses are related by the parameter (ρ) defined as;  

 

 

The buckling stress of top flange (σTF
buc) is plotted vs. parameter (θ) for bending ratio (μ=M2/M1) =0.25. The 

box section parameters are; (E)=200 GPa, ()=0.33, (L)= 3000 mm and (ε)=1. Curves with solid circles 

represents stress gradient (ρ)= 0.1 and triangular legend represents (ρ)=0.6. The parameter (θ) varies between 

0.25 and 3. As shown, by increasing (θ) the buckling stress (σTF
buc) increases due to the increase of the 

rotational restraints. The values of (σTF
buc) increase by almost 100% by increasing the web/flange width ratio 

(θ) from 0.2 to 2.8. It should be noted that much of the increase in (σFT1
buc) occurs between (θ)=0.2 and 1.8.  

Beyond this range the influence of (θ) on flange buckling stress is very little. It must be noted that code 

prediction for (μ)=0  is constant value (σTF
buc)=141 MPa. The difference is 40% by accounting for web 

rotational restraints.  
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FIG-4: Variation of (σF1 
buc ) with (θ) for ρ=0.1, 0.6 

 

                     The variation of moment ratio parameter (μ=M2/M1) with top flange buckling coefficient (KTF) is 

depicted in Fig (5). In this case, E=200 GPa =0.33., (ε)=1, L=2700 mm and (σxx/σ1) = 1. The curve circular 

legends represents (θ)=1 and the triangular legend represents (θ) =10. Both curves intersect with the vertical 

y-axis at (μ) = 0. This point represents the uniaxial compression and bending loading condition. In both cases, 

buckling load coefficient (KTF)  decreases by increasing the stress ratio (μ) until each curve reaches a constant 

value. It can also be observed that as the web size increases, the (KTF) factor increases due to the increase the 

flange rotational restraint. The increase is very pronounced for small (θ) variations. To illustrate, the average 

increase of (KTF) is almost 30% by increasing (θ) from 1 to 10.  This shows sensitivity of the top flange buckling 

load factor with (θ). It should be emphasized that current design codes [22-32] provide a constant value of for 

all values of (θ). It was noted that in some cases the difference may exceed 38%.  

 

 

 

 

 

 

 

 

 

 

 

 

 

FIG.-5: Variation of (K) with (μ) for (θ)=1, 10 
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                        It is of interest to show in influence of flange thickness on shear buckling of the web (KRW).  Fig.(6) 

shows the  variation (KTF) with (θ).  The triangular data points represents (θ) = 1.2 and the solid circles (θ)= 1.75. 

The variation of (θ) ranges between 0.2 and 3. The change in (KRW) values is approximately 14% for (ε) =1.75. 

This difference increases to 24% by decreasing (ε) to 1.2.  Therefore, as the flange width increases the shear 

buckling load factor (KRW) increases due to the increase in the flange rotational stiffness.  It can be observed that 

majority of the increase in the (KRW) values occur in the early stages of the both curves. The change becomes very 

small when the (θ) ratio approaches 1. Accordingly, additional material is not economical beyond this value. 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIG-6: Web shear buckling coefficient (KRW) with (θ). 

6- CONCLUSIONS 

                   Limited literature dealt with local stability of stiffened box sections subject to combined 

loadings. This loading arrangement is encountered in several engineering applications. Much of the effort 

was directed towards investigating box sections members subjected either to uniform compression or pure 

bending. The paper described efficient iterative algorithm using unconstrained optimization algorithm 

(UOA) to compute global and local buckling of built-up stiffened box section subject to combined loadings. 

Energy formulation for the top stiffened flange and the attached webs was presented. The stiffeners are 

assumed to be rigidly connected to the top flange. Unconstrained optimization algorithm was then described 

to compute the global and local buckling of assembled box components. Results were presented to illustrate 

behavior of box section. Design guidelines are proposed that be utilized in practice to maximize the structural 

response. 
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 - NOTATIONS 

Aij
TF, Cmn

TF
, Drz

TF = top flange displacement coefficients; 

ALS, QLS, ILS
y, ILS

z , JLS = longitudinal stiffener area, first moment of inertia, major/ minor second moment of 

inertia and torsional rigidity 

AWDRW = work done by applied forces 

Aij
RW, Cmn

RW
, Drz

RW  = web displacement coefficients.  

bw = web width; 

bF= flange width; 

BSERW= web bending strain energy, 

C1-C10 = control parameters  

E = elastic modus 

KRW , KLW , KTF , KBF= web and flange buckling coefficients; 

L = length of the box section; 

LS1- LS7 = stiffeners integral functions  

LS = longitudinal stiffeners; 

M1, M2= Major and minor axes bending moments. 

NLS = Number of longitudinal and stiffeners;  

ORW, oTF  = Web and flange origins 

P = Applied axial force; 

Ri
TF, Qj

TF, Pm
TF

, Sn
TF, Tr

TF, Uz
TF

 = one dimensional shape functions 

Ri
RW, Qj

RW, Pm
RW

, Sn
RW, Tr

RW(, Uz
RW = web displacement functions 

RSERW = rotational strain energy,  

RWDRW = work done by the restraining reactions.  

RWJi- RWJ10 = integral functions 

SETF = The top flange strain energy; 

SETS = transverse stiffener strain energy  

SERW= web strain energy  

TF1 -TF7 = integral functions 

tw, tF  = web and flange thickness; 

WRW, URW, VRW = out-of-plane and in-plane displacement functions  

x= design variables  

ξRW, ηRW , ξRW, ηRW,  ξTF, ηTF, ξTF, ηTF   = webs and flanges local coordinates;  

ϕ = phase angle  

λ = half the wave length  

β= step size 

ζ= search direction vector 

ε = non-dimensional parameter (tF/tw)  

θ= non-dimensional parameter (bw/bF) 

μ= non-dimensional parameter M2/M1 

𝜏= Web shear stress. 

σRW
buc, σTF

buc = web and flange critical buckling stresses; 

σTF
xx , σBF

xx = applied stress across the flanges  

ωI, ωII=  non dimensional stresses 

v = Poisson ratio; 


